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We have introduced a set of coupled fractional reaction-diffusion equations to model a multispecies system
undergoing anomalous subdiffusion with linear reaction dynamics. The model equations are derived from a
mesoscopic continuous time random walk formulation of anomalously diffusing species with linear mean field
reaction kinetics. The effect of reactions is manifest in reaction modified spatiotemporal diffusion operators as
well as in additive mean field reaction terms. One consequence of the nonseparability of reaction and subdif-
fusion terms is that the governing evolution equation for the concentration of one particular species may
include both reactive and diffusive contributions from other species. The general solution is derived for the
multispecies system and some particular special cases involving both irreversible and reversible reaction
dynamics are analyzed in detail. We have carried out Monte Carlo simulations corresponding to these special
cases and we find excellent agreement with theory.
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I. INTRODUCTION

In recent years numerous physical and biological systems
have been reported in which the diffusion rates of species
cannot be characterized by the single parameter of the diffu-
sion constant. Instead, the �anomalous� diffusion is charac-
terized by a scaling parameter � as well as a diffusion coef-
ficient D��� and the mean square displacement of diffusing
species �r2�t�� scales as a nonlinear power law in time, i.e.,
�r2�t��� t� �1�. The case of subdiffusion 0���1 is particu-
larly prevalent in biological systems �2–10� and is generic in
media with obstacles �11,12� or binding sites �13�.

Anomalous subdiffusion has been successfully modelled
mesoscopically using continuous time random walks
�CTRWs� �14,15�, or generalized master equations �GMEs�,
with a long-tailed waiting-time density �1�. This leads to a
macroscopic formulation as a fractional subdiffusion equa-
tion �see, e.g., Refs. �1,16,17�� with a temporal fractional
order derivative acting on the spatial Laplacian operator.
Fractional variants of the Fokker-Planck equation have also
been derived in the case of anomalous subdiffusion in an
externally applied force field �16,18–20�.

A fundamental question that has arisen in recent years is
how to incorporate reaction terms correctly when the par-
ticles involved are undergoing anomalous subdiffusion. Ear-
lier model formulations utilized fractional reaction-diffusion
equations where a temporal fractional derivative operated ei-
ther solely on the spatial Laplacian term �21–25� or upon
both the Laplacian and the reaction terms �26–30�. However,
in the simple case of linear reaction dynamics, it was shown
�25� that the equation

�n

�t
= D�

�1−�

�t1−�

�2n

�x2 − kn �1�

breaks down to give physically unrealistic negative solu-
tions, and the equation

�n

�t
= D�

�1−�

�t1−�

�2n

�x2 −
�1−�

�t1−�kn �2�

only applies to subdiffusion with instantaneous removals. In
the above equations �1−�

�t1−� is a Riemann-Liouville fractional
derivative �31�. Neither of the above equations describes
subdiffusion with a constant �in time� per capita removal of
species. Proceeding from a mesoscopic CTRW description
with a long tailed waiting-time density and with a reduction
in particle concentration driven by constant per capita linear
reaction dynamics, it has been shown that the appropriate
fractional reaction-diffusion equation to model this process is
�25�

�n

�t
= D�e−kt �1−�

�t1−��ekt�
2n

�x2	 − kn . �3�

The effect of linear reactions is thus manifest in a reaction
modified spatiotemporal diffusion operator as well as in the
additive mean field reaction term. An equivalent result, using
a slightly different formalism, has also been derived by bal-
ancing reaction and diffusion fluxes in a CTRW description
�32� and this result has been generalized to two species with
irreversible linear reaction kinetics �32,33�. An example is
the two-species system in which the concentration of one
species A decays at a constant per capita rate and the con-
centration of another species B increases at the same rate
�i.e., A→B� �32,33�. The governing evolution equations for
the concentrations can be written as

�a

�t
= D�e−kt �1−�

�t1−��ekt�
2a

�x2	 − ka , �4�
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�b

�t
=

�1−�

�t1−�

�2b

�x2 + ka + 
 �1−�

�t1−� − e−kt �1−�

�t1−� �ekt�� �2a

�x2 , �5�

where a and b denote the concentration of species A and B.
The evolution equation for species A is identical to Eq. �3�

but the evolution equation for species B involves a linear
combination of both pure fractional diffusive terms as well
as reaction modified fractional diffusive terms involving spe-
cies A. A CTRW formulation of two-species reversible reac-
tions with heavy tailed waiting-time densities was also pro-
vided in Ref. �33� but no corresponding formulation as a
fractional reaction-diffusion equation was obtained for this
case. In related work, a set of integrodifferential equations
has been introduced to model a multispecies system with
anomalous subdiffusion and nonlinear reaction dynamics
�34,35�. This set of equations, which was derived from a
CTRW formulation with aged walkers, also has coupling be-
tween the diffusive terms and the reaction terms. However,
in contrast to the evolution equations reported in Refs.
�32,33� and those derived below, there is no coupling be-
tween diffusive terms from different species,

In this paper we have derived a set of coupled fractional
reaction-diffusion equations to describe the evolution in the
concentrations of n species undergoing anomalous subdiffu-
sion with reactions described by the linear mean-field reac-
tion equations

�n

�t
= Rn , �6�

where R is a constant reaction rate matrix and n is a vector of
species concentrations. Starting with a mesoscopic CTRW
description and assuming that the walkers composing each
species are governed by the same step-length densities and
the same waiting-time densities we derive the following bal-
ance equation:

�n

�t
= D�eRt �1−�

�t1−��e−Rt�
2n

�x2	 + Rn , �7�

which is a generalization of Eq. �3� for multispecies. In the
above equation eRt is a matrix exponential. This system of
equations includes the possibility of diffusive contributions
between species and thus differs from the evolution equa-
tions of Refs. �34,35� �when restricted to linear reaction dy-
namics�.

The remainder of this paper is organized as follows. In
Sec. II we present the mesoscopic CTRW formulation for a
multispecies system undergoing anomalous subdiffusion
with linear mean field reaction dynamics. The macroscopic
fractional reaction-diffusion equations for this model system,
Eq. �7�, are derived in Sec. III. The general solution is also
obtained in this section. In Sec. IV we analyze examples
involving two-species with irreversible and reversible reac-
tions. The results are compared with Monte Carlo simula-
tions. In Sec. V we describe a generalization of the formal-
ism allowing for species whose jumps are governed by
different waiting-time densities. The CTRW formulation in

this case does not reduce, in general, to a system of fractional
reaction-diffusion equations. Finally the models and results
are discussed in Sec. VI.

II. CONTINUOUS TIME RANDOM WALK FORMULATION

Here we consider n reacting particle species satisfying the
linear mean-field reaction equation in Eq. �6� where each
species undergoes anomalous subdiffusion with the same
waiting time ��t� and jump length ��x� probability densities.
In the following we use the CTRW approach of Refs. �25,33�
with decoupled jump-length and waiting-time densities. The
master equation for the probability, q�x , t�, that the particle
arrives at the position x at time t taking into account Eq. �6�
is

q�x,t� = ��t�q�x,0� + �
−�

�

��x − x��

� �
0

t

��t − t��eR�t−t��q�x�,t��dt�dx�. �8�

To find the corresponding probability n�x , t� of being at x at
some time t we use the convolution as in Ref. �25�

n�x,t� = �
0

t

	�t − t��eR�t−t��q�x,t��dt�. �9�

Here the change in concentrations due to reactions is taken
into account through the matrix exponential, which operates
on those walkers that have arrived at earlier times t� and then
survived without jumping for a time t− t� according to the
survival probability 	�t− t��. The survival probability is de-
fined by

	�t� = 1 − �
0

t

��t��dt�. �10�

Equation �8� and Eq. �9� can be combined by first multiply-
ing both equations by e−Rt to find

e−Rtq�x,t� = e−Rt��t�q�x,0� + �
−�

�

��x − x��

� �
0

t

��t − t��e−Rt�q�x�,t��dt�dx� �11�

and

e−Rtn�x,t� = �
0

t

	�t − t��e−Rt�q�x,t��dt�, �12�

where we have used the identity �36�

e−RteR�t−t�� = e−Rt�. �13�

Now using Laplace transforms, as in Ref. �25�, we obtain
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e−Rtn�x,t� = 	�t�n�x,0� + �
−�

�

��x − x��

� �
0

t

��t − t��e−Rt�n�x�,t��dt�dx� �14�

or by multiplying by eRt we yield the master equation

n�x,t� = 	�t�eRtn�x,0� + �
−�

�

��x − x��

� �
0

t

��t − t��eR�t−t��n�x�,t��dt�dx�. �15�

We note that the above equation can be rewritten using a
Caputo fractional deriviative �see Ref. �37�� if a Mittag-
Leffler density is used for ��t� �38,39� but there is no advan-
tage to do so in this case.

The two species system considered in Ref. �33� with �I�
irreversible linear reactions �A→B� and �II� reversible linear
reactions �A�B� corresponds to a two-species reduction of
Eq. �15� with the mean-field reaction matrices

RI = 
− k 0

k 0
� and RII = 
− k1 k2

k1 − k2
� , �16�

respectively. The reaction matrices are diagonalisable in
these examples. In the next section we show that with the
introduction of a long-tailed waiting-time density ��t�, we
can simplify Eq. �15� to a general system of fractional
reaction-diffusion equations.

III. FRACTIONAL REACTION-DIFFUSION EQUATION

To find the corresponding system of fractional reaction-
diffusion equations we first multiply Eq. �15� by e−Rt to give

e−Rtn�x,t� = 	�t�n�x,0� + �
−�

�

��x − x��

� �
0

t

��t − t��e−RteR�t−t��n�x�,t��dt�dx�.

�17�

Now upon setting

y�x,t� = e−Rtn�x,t� , �18�

noting n�x ,0�=y�x ,0�, and using Eq. �13�, we have that Eq.
�17� simplifies to

y�x,t� = 	�t�y�x,0� + �
−�

�

��x − x���
0

t

��t − t��y�x�,t��dt�dx�.

�19�

If ��t� is a long-tailed waiting-time density then Eq. �19� is a
multispecies representation of the well known CTRW master
equation for anomalous subdiffusion which leads to the mac-
roscopic fractional subdiffusion equation �1�, now written in
vector form

�y

�t
= D�

�1−�

�t1−�

�2y

�x2 . �20�

The governing evolution equation for the concentrations n is
now obtained by combining Eqs. �18� and �20�. Explicitly,
after substituting Eq. �18� into Eq. �20�, evaluating the first
order time derivative, and rearranging, we find

�n

�t
= eRtRe−Rtn + eRtD�

�1−�

�t1−��e−Rt�
2n

�x2	 . �21�

The final form of the fractional reaction diffusion equation is
then

�n

�t
= Rn + eRtD�

�1−�

�t1−��e−Rt�
2n

�x2	 , �22�

where we have used the identity �40�

eRtR = ReRt. �23�

Equation �22� is the main result of this paper. It is clear
from this equation that the reaction terms and diffusion terms
are coupled when the particles are undergoing anomalous
subdiffusion �see also Ref. �33��. Note too that as a conse-
quence of the matrix multiplication in this equation, the gov-
erning evolution equation for the concentration of one spe-
cies will in general involve not only diffusive terms for this
species but also diffusive terms corresponding to other par-
ticle species. In the Markovian case, �=1, the system Eq.
�22� reduces to the familiar form

�n

�t
= Rn + D1

�2n

�x2 �24�

and, in contrast to the anomalous subdiffusion case, the re-
action and diffusive terms are no longer coupled.

The solution to the system in Eq. �22� can readily be
found from the equivalent coupled system described by Eqs.
�18� and �19�. The general solution to the initial value prob-
lem is given by

n�x,t� =
1


4
D�t��
−�

�

G��x�,t�etRn�x�,0�dx�, �25�

where G��x , t� is the Green’s solution of the fractional sub-
diffusion equation �1�. Explicitly,

G��x,t� =
1


4
D�t�
H1,2

2,0� x2

4D�t��� �1 −
�

2
,�	

�0,1��1

2
,1	 � , �26�

where H is a Fox function �31,37� which can be evaluated
using the method in Ref. �1� if � is a rational number.

The multispecies fractional reaction diffusion system, Eq.
�22�, can be simplified further in special cases. First note that
if all particles are initially located at the origin then n�x ,0�
=��x� no and the convolution in Eq. �25� yields the solution
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n�x,t� = G��x,t�etRno. �27�

Secondly note that if the matrix R can be diagonalized Eq.
�22� can be transformed into a system of linearly indepen-
dent subdiffusion-reaction equations by setting

w�x,t� = Pn , �28�

where P is matrix whose columns are eigenvectors corre-
sponding to the eigenvalues of R �41�. The governing system
of evolution equations in this case decouples to

�w

�t
= Dw + eDtD�

�1−�

�t1−��e−Dt�
2w

�x2 	 , �29�

where D is a diagonal matrix composed of the eigenvalues of
R.

IV. TWO-SPECIES FRACTIONAL REACTION
DIFFUSION EXAMPLES

In this section we present explicit forms and solutions of
Eq. �22� for two-particle systems with linear reaction sys-
tems described by the coefficient matrices in Eq. �16� and we
compare the analytic solutions with Monte Carlo simula-
tions. A brief description of the Monte Carlo simulations is
given in the appendix. The cases that we consider were con-
sidered previously by Ref. �33� using a different formulation
and here we demonstrate how our general multispecies sys-
tem, Eq. �22�, encompasses these special cases. For ease of
notation we denote the concentrations of the two species by
A and B. In these illustrative examples the reaction coeffi-
cient matrix R is diagonalizable but the general system de-
scribed by Eq. �22� can be applied to anomalous subdiffusion
with any linear mean-field reaction kinetics.

A. Irreversible reaction A\B

The reaction coefficient matrix in this case is given by RI
in Eq. �16�. The matrix exponential in Eq. �22� can readily be
evaluated resulting in

�a

�t
= e−ktD�

�1−�

�t1−��ekt�
2a

�x2	 − ka , �30�

for species A �similar to the single species case described by
Eq. �3��, and

�b

�t
= D�

�1−�

�t1−�

�2�a + b�
�x2 + ka − e−ktD�

�1−�

�t1−��ekt�
2a

�x2	
�31�

for species B. In this case we recover the fractional reaction
diffusion equations derived in Refs. �32,33�. Diffusive terms
corresponding to both species appear in the evolution equa-
tion for species B. The solutions of Eq. �30� and Eq. �31�
with initial conditions a�x ,0�=ao��x� and b�x ,0�=bo��x�,
can be obtained from Eq. �27�, yielding

a�x,t� = aoe−ktG��x,t� , �32�

and

b�x,t� = �bo + ao�1 − e−kt��G��x,t� , �33�

similar to Ref. �32�.
Solutions for the two-species irreversible reactions with

anomalous subdiffusion are compared with the results of
Monte Carlo simulations in Fig. 1 for parameter values ao
=bo=1 /2, k=0.1, �=1 /2, and D�=0.892. The analytic solu-
tions are in excellent agreement with the Monte Carlo simu-
lations at times t=1 and t=2, for both species A and B. The

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

a(x,t)

–4 –3 –2 –1 1 2 3 4

x

0

0.1

0.2

0.3

b(x,t)

–4 –3 –2 –1 1 2 3 4

x

(a)

(b)

FIG. 1. �Color online� Comparison of the Green’s function so-
lution �solid lines� and the Monte Carlo simulations �symbols� for
species A �top� and B �bottom� with two-species irreversible reac-
tions �Eqs. �30� and �31�� at the times t=0.1 �red ��, t=1.0 �blue ��,
and t=2.0 �black �� with the parameters k=0.1 and �=0.1. The
Monte Carlo results were obtained from an ensemble average over
50 simulations.
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Monte Carlo simulations do not match as closely at shorter
times t=0.01, but there are two reasons for this. First, the
analytic results are for a delta function initial condition that
is infinite at t=0 whereas the Monte Carlo simulations nec-
essarily use a finite initial condition at t=0. Second, our
Monte Carlo simulations employ a Pareto Law for the
waiting-time density and the macroscopic fractional subdif-
fusion equation �22� was only derived from CTRWs in the
long-time asymptotic limit �1,25� for this density.

Reversible reaction ArB

The reaction coefficient matrix in this case is given by RII
in Eq. �16� and the resulting evolution equations are

�a

�t
= �2D�

�1−�

�t1−�

�2�a + b�
�x2 − k1a + k2b

+ e−k*tD�

�1−�

�t1−��ek*t�
2��1a − �2b�

�x2 	 , �34�

and

�b

�t
= �1D�

�1−�

�t1−�

�2�a + b�
�x2 + k1a − k2b

− e−k*tD�

�1−�

�t1−��ek*t�
2��1a − �2b�

�x2 	 , �35�

where k*=k1+k2, �1=k1 /k*, and �2=k2 /k*. We observe here,
due to the albeit linear interaction between the two species,
that both equations have subdiffusive �standard fractional
and reaction modified fractional� contributions for both spe-
cies.

As an aside we note that the above two equations can be
written in the form

��a + b�
�t

= D�

�1−�

�t1−�

�2�a + b�
�x2 �36�

for a+b and

���1a − �2b�
�t

= − k*��1a − �2b�

+ e−k*tD�

�1−�

�t1−��ek*t�
2��1a − �2b�

�x2 	
�37�

for �1a−�2b.
The solution of Eqs. �34� and �35� again with the initial

conditions a�x ,0�=ao��x� and b�x ,0�=bo��x�, are

a�x,t� = ao��2 + �1e−k*t�G��x,t� + bo�2�1 − e−k*t�G��x,t� ,

�38�

b�x,t� = ao�1�1 − e−k*t�G��x,t� + bo��1 + �2e−k*t�G��x,t� .

�39�

These solutions are compared with the results of Monte
Carlo simulations in Fig. 2 and again there is excellent agree-

ment. The parameter values used in the simulations were as
follows; ao=1, bo=0, k1=k2=0.1, �=1 /2, and D�=0.892.

V. DIFFERENT WAITING-TIME DENSITIES

In the previous examples and in the CTRW formulation
leading to Eq. �22� we assumed that the waiting-time densi-
ties are the same for each species. Here we consider the
possibility in which the subdiffusion of each species is gov-

0
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b(x,t)

–4 –3 –2 –1 1 2 3 4

x

(a)

(b)

FIG. 2. �Color online� Comparison of the Green’s function so-
lution �solid lines� and the Monte Carlo simulations �symbols� for
species A �top� and B �bottom� for the two-species reversible reac-
tion �Eqs. �38� and �39�� at the times t=0.1 �red ��, t=1.0 �blue ��,
and t=2.0 �black ��. The parameters are k1=0.1, k2=0.1, and �
=0.1. The Monte Carlo results were obtained from an ensemble
average over 50 simulations.
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erned by a different waiting time density. We have not de-
veloped a general theory for this case but we have obtained
interesting results in the case of two species irreversible re-
actions A→B, with the anomalous exponent for species A set
to �a=1 /2 and standard diffusion for species B �i.e., �b=1�,
that point the way to a more general theory. Here we do not
expect the results for species A to change compared with the
previous irreversible simulations, as its concentration is not
coupled to B in Eq. �6� with R=RI. However since particles
of type A are transformed into particles of type B and the
waiting-time densities differ, we expect a change in the be-
havior of the concentration of species B.

A possible generalization of the above is to write Eqs. �8�
and �9� as

q�x,t� = ��t�n�x,0� + �
−�

�

��x − x��

� �
0

t

eR�t−t��
�t − t��q�x�,t��dt�dx� �40�

and

n�x,t� = �
0

t

eR�t−t����t − t��q�x,t��dt�, �41�

where


�t� = 
�1�t� 0

0 �2�t� � and ��t� = 
�1�t� 0

0 �2�t� � .

�42�

Unfortunately it is not possible to reduce these equations into
the form of Eq. �15� except in special cases such as when the
waiting times are identical �1�t�=�2�t� or the reaction coef-
ficient matrix R is diagonal. However the equations can, in
this case, be reduced to a system of fractional reaction-
diffusion equations. The equation for the concentration of
particles of type A is again given by Eq. �30�, and its solution
by Eq. �32�, but now with �a and D�a

replacing � and D�.
The equation for particles of type B is

�b

�t
= D�b

�1−�b

�t1−�b

�2�a + b�
�x2 + ka

− D�b

��a−�b

�t�a−�b

e−kt �1−�a

�t1−�a
�ekt�

2a

�x2	� �43�

which differs from Eq. �31� mainly due to the presence of the
fractional derivative ��a−�b

�t�a−�b operating on the second term. The
solution of this equation can be shown to be

b�x,t� = �ao�1 − e−kt� + bo�G�b
�x,t� +

aoe−kt


4
D�b
t�b

�
l=1

�

�
m=1

�
�kt�l

l! 
D�a
t�a

D�b
t�b�m

� �H2,3
3,0� x2

4D�b
t�b���1 −

�b

2
+ l + ��a − �b�m,�b	�1 −

�b

2
− �bm,�b	

�0,1��1

2
,1	�l + 1 −

�b

2
− �bm,�b	 � −

D�b
t�b

D�a
t�a

� H2,3
3,0� x2

4D�b
t�b���1 −

�b

2
+ l + ��a − �b��m − 1�,�b	�1 −

�b

2
− �b + �a − �bm,�b	

�0,1��1

2
,1	�l + 1 −

�b

2
− �b + �a − �bm,�b	 �� . �44�

The solution reduces to the solution in Eq. �33� when �a

=�b=� and D�a
=D�a

=D�.
We have compared the above solutions with Monte Carlo

simulations in Fig. 3 and we find excellent agreement except
in the short time behavior of species B �t=0.1�. Again this
may be due to the approximate delta function initial condi-
tions that we used in the simulations, as Eq. �44� matches the
simulations extraordinarily well at later times. However, it is
also possible that Eq. �44� has the same long-time asymptotic
behavior as the correct solution, but the short-time behavior
is not correct.

VI. SUMMARY AND DISCUSSION

In this paper we have considered a general multispecies
system undergoing anomalous subdiffusion with linear reac-
tion dynamics. Starting from a mesoscopic CTRW model
formulation with the same waiting-time and jump-length
densities for each species we have derived a system of frac-
tional reaction-diffusion equations for linear reactions de-
scribed by a general reaction coefficient matrix. The result-
ing system of equations in vector form is similar to the
analogous single particle case �25� but with a matrix expo-
nential replacing the exponential in the modified fractional
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derivative temporal operator. This work extends the one and
two particle results of Refs. �25,32,33� to the n particle case.

One of the consequences of anomalous subdiffusion on
the form of the fractional equations is that reaction term and
diffusion terms are no longer independent but are instead
coupled as in the single species case. Further, due to the
presence of the matrix exponential the governing equation
for one species may involve diffusive contributions from
other species. This differs from the work of Refs. �34,35�,
where the diffusive contributions are restricted to the one

species. The reason behind the extra diffusive terms, as men-
tioned in Ref. �33�, is linked to the non-Markovian nature of
anomalous subdiffusion. In essence, the newly created par-
ticles remember the diffusive behavior of their reactant an-
cestors because of the waiting-time probability density func-
tion. The coupling of concentrations in the mean-field
reaction equations then results in the additional diffusive
contributions due to other species. However, no extra contri-
butions will arise if there is no coupling to the other species.

We assessed the validity of our fractional reaction-
diffusion equations by comparing solutions with Monte
Carlo simulations and we found excellent agreement for the
cases tested except at very short times. We also investigated
the possibility of different waiting-time densities for different
species. Here the CTRW formulation could not be reduced to
a system of fractional reaction-diffusion equations except in
certain special cases. We carried out Monte Carlo simula-
tions and found that the concentrations of species with dif-
ferent waiting-time densities could be represented as a linear
combination of the Green’s functions of the relevant frac-
tional subdiffusion equations.

The results of this paper provide a useful platform for
developing robust models for multispecies systems undergo-
ing anomalous subdiffusion with nonlinear reactions. In the
case of linear reaction dynamics it was shown that the for-
mulation of the appropriate fractional reaction-diffusion
equations requires careful consideration of the reaction dy-
namics and how they effect diffusive contributions for a
given species. We expect that these considerations will be
even more delicate with nonlinear reactions. With the num-
bers of reports of biological systems displaying anomalous
subdiffusion rapidly increasing, this remains an important
area for future research.
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APPENDIX: MONTE CARLO SIMULATIONS

The Monte Carlo simulations were conducted on a one-
dimensional discrete grid with periodic boundaries where the
particles performed jumps to their nearest neighbors in an
unbiased manner after waiting a random amount of time. For
our purposes, we used the Pareto law used by Ref. �28�

��t� =
�/�

�1 + t/��1+� �A1�

to generate the random waiting times. The parameters � and
� are the anomalous exponent and the characteristic time,
respectively. This probability density function was chosen
for ease of calculation and because it has the required long-
time asymptotic scaling

��t� �
�

�
� t

�
	−1−�

�A2�

needed by the CTRW theory.
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FIG. 3. �Color online� Comparison of the Green’s function so-
lution �solid lines� and the Monte Carlo simulations �symbols� for
the two-species irrreversible reaction �Eqs. �32� and �44�� at the
times t=0.1 �red ��, t=1.0 �blue ��, and t=2.0 �black �� with the
parameters k=0.1, �=0.1, �a=0.5, and �b=1. The Monte Carlo
results were obtained from an ensemble average over 50
simulations.
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For comparison of analytic and Monte Carlo simulations
we require an estimate of the diffusion coefficient. Using the
appropriate jump-length density for nearest-neighbor jumps
and the waiting-time density �A1�, it can be shown that the
diffusion coefficient is given by

D� =
�x2

2���1 − ��
, �A3�

where �x is the grid spacing. Note, in the case of the Mittag-
Leffler density �39�, or when �=1, the term ��1−�� does not
appear in this expression. We note a method for evaluating
Mittag-Leffler distributed deviates using two uniform ran-
dom numbers is available in Refs. �42,43� but was not used
in this paper.

In general, the outline of the simulation process is given
in the following. Each simulation run begins with assigning
the initial position for every particle and their corresponding
jump-times. Initially the jump times are simply the random
times generated using Eq. �A1� as described in Ref. �44�.

After the initial setup, the simulation then cycles through
the following steps. First the particle with minimum jump-
time is found and the elapsed time T since the last jump is
evaluated. The reaction probability for both species is then

evaluated. For example, in the reversible reaction simulation
runs, the reaction probability is �1−exp�−k1T�� for species A
and �1−exp�−k2T�� for species B. Analogous probabilities
for the irreversible reaction case are found for both species
by setting k1=k and k2=0. Every particle of each species is
then tested for deletion by comparing a random number
against the relevant reaction probability. If the test for par-
ticle deletion is successful, then the particle in question is
deleted. A corresponding particle of the other species is cre-
ated to replace the deleted particle at the same grid point. If
the jumping particle is not deleted, then the particle is moved
one lattice site to the left or right �a jump� and a new jump-
time for the particle is obtained by adding a random waiting-
time to the jumping particle’s current jump time. The process
then repeats through the previous steps until the total time
for the simulation run is exceeded.

Output is saved at regular time intervals of the simulation
run and used to average over a number of simulation runs.
For each figure in this paper, unless otherwise stated, simu-
lation runs began with 100 000 particles of type A and of
type B released from the origin to mimic a delta function
initial condition. The characteristic time of the waiting-time
density, ��t�, were set to �=0.1 and the exponent, �=0.5.
The results given were averaged over 50 simulation runs.
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